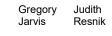
### **Root Cause Analysis Case Study**




### **Cause Mapping® Steps**





Christa

McAuliffe





Scobee Smith

Ellison

Onizuka

McNair

NASA Image

#### Timeline

| Year | Date          | Time (Eastern)     | Description                                                                    |
|------|---------------|--------------------|--------------------------------------------------------------------------------|
| 1983 | April 4       |                    | First Challenger flight, STS-6, 6 <sup>th</sup> overall mission                |
| 1985 | December 18   |                    | Planned Columbia launch, delayed, first of 7 delays                            |
| 1986 | January 12    |                    | Columbia launch, STS-61-C, 7 <sup>th</sup> flight, 24 <sup>th</sup> overall    |
|      |               |                    | Planned Columbia landing delayed 3 times in 2-days                             |
|      | January 18    |                    | Columbia landed at Edwards, AFB in California                                  |
| 1986 | January 22-27 |                    | Planned Challenger launch, 6 delays in 6 days                                  |
|      | January 27    | afternoon, evening | NASA meetings with Morton Thiokol regarding temps                              |
|      | January 28    | 11:38 AM, T - 0    | Challenger launch, STS-51-L, 10 <sup>th</sup> flight, 25 <sup>th</sup> overall |
|      |               |                    | 36 F at launch (15 F colder than any previous launch)                          |
|      |               | + 0.678 secs       | First puffs of smoke from right booster aft field joint                        |
|      |               | + 2.733 secs       | Last puffs of smoke                                                            |
|      |               | + 57.788 secs      | First evidence of burn through plume from booster                              |
|      |               | + 73.213 secs      | Explosion of External Tank, Challenger broke up                                |
|      |               | + 98 secs          | Crew module peak altitude of 65,000 feet                                       |
|      |               | + 2-min 45 secs    | Crew module contacted water                                                    |
|      | June 6        |                    | Challenger Investigation Report released                                       |
| 1988 | September 29  |                    | Return to Flight, Discovery STS-26, LC-39B                                     |

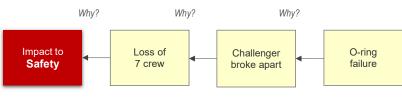
#### 1. Problem

| What  | Problem(s)                                              | Challenger exploded, Shuttle disaster, Loss of life, Breakup on 1st stage ascent                                                                                           |
|-------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| When  | Date                                                    | January 28, 1986                                                                                                                                                           |
|       | Time                                                    | 11:39 AM EST                                                                                                                                                               |
|       | Different, unusual, unique, (specific to this incident) | Coldest launch at ~34° F, freezing temps that morning,<br>10th flight of the Challenger, multiple delays in launch date,<br>teacher onboard shuttle, high wind shear aloft |
| Where | Facility, site, area                                    | NASA, Kennedy Space Center, Cape Canaveral, FL, Pad LC-39B                                                                                                                 |
|       | Equipment                                               | Challenger Space Shuttle, Flight STS-51-L                                                                                                                                  |
|       | Task being performed                                    | First stage ascent, throttle up                                                                                                                                            |

### Impact to each GOAL

| Safety                                            | Loss of 7 crew                                                                               |               |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|
| Vehicle                                           | Loss of Challenger                                                                           | -             |
| Mission, Schedule                                 | 2.5 year halt to shuttle program                                                             | -             |
| Environmental Debris, fuel, chemicals in Atlantic |                                                                                              |               |
| Customer                                          | Loss of Halley's Comet camera (CHAMP), Loss of SPARTAN-203 satellite for astronomy research. |               |
| Labor, Time                                       | Debris recovery, investigation, corrective actions (hours)                                   |               |
|                                                   | This incident                                                                                | \$3.5 billion |
| Frequency                                         | First time, loss of shuttle and crew                                                         |               |

info@thinkreliability.com 281-412-7766



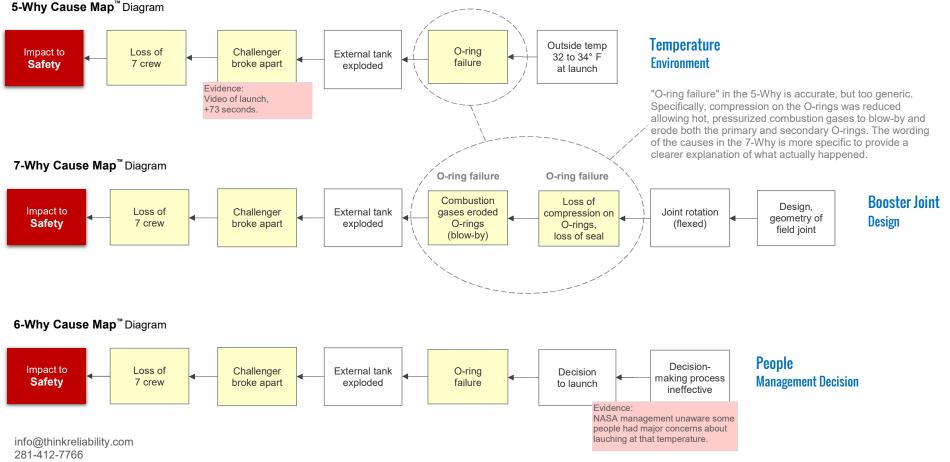

### **Cause Mapping® Method**

Problem Solving • Root Cause Analysis

Step 2. Cause-and-Effect Analysis - Simple

### 3-Why Cause Map<sup>™</sup> Diagram

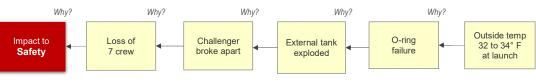



# Don't overlook the benefit of starting with a simple 3- to 5-Why even on complex problems.

# Cause Mapping® Method

Problem Solving • Root Cause Analysis

### O-Ring Failure Equipment


Here is a simple explanation of why the Challenger disaster happened. This 3-Why analysis is accurate, but it's not complete. As more information becomes available, it can expand into a 6-Why to reveal more detail about the incident.

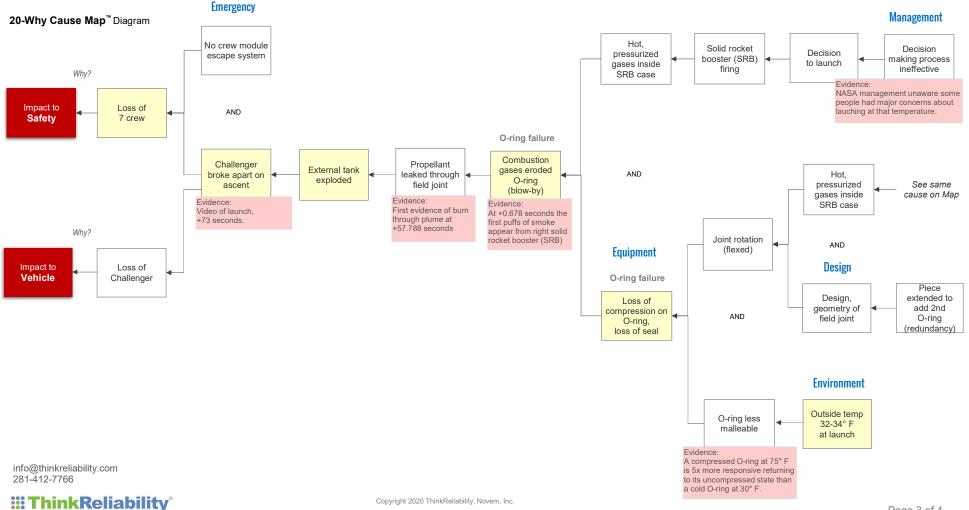


### **::: ThinkReliability**°

Step 2. Cause-and-Effect Analysis - More Detailed

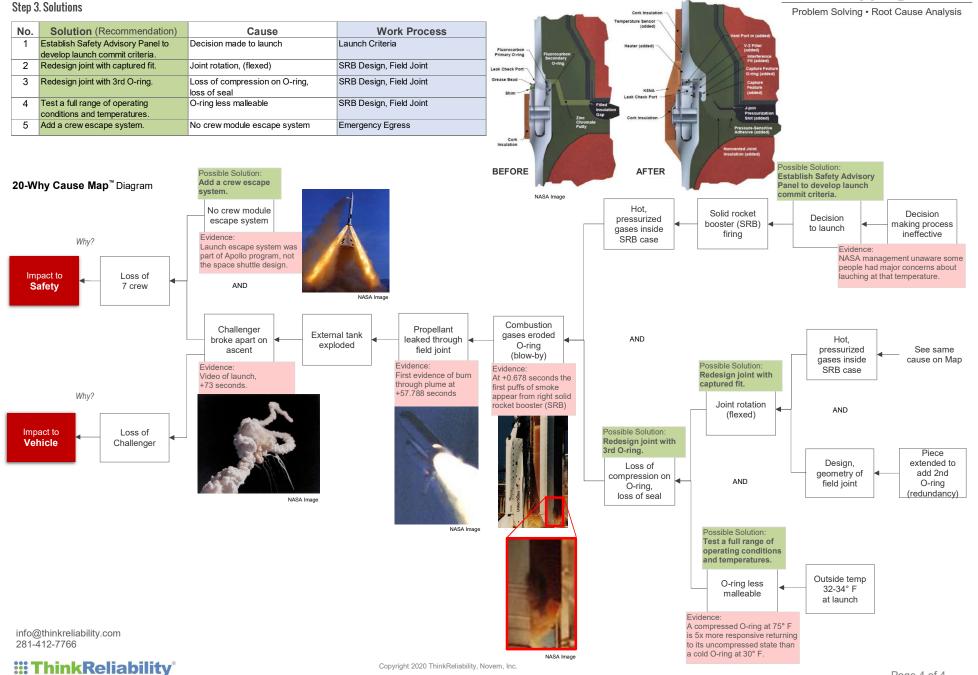
#### 5-Why Cause Map<sup>™</sup> Diagram




# Cause Mapping® Method

Problem Solving • Root Cause Analysis

### Improve the Way People Communicate


The 20-Why *Cause Map* diagram below shows how four different people may each argue their point assuming they are "right." Each of the linear cause-and-effect analyses may be accurate, but none of them are complete. The input from each person needs to be validated with evidence then combined into a more complete explanation of the issue.

The *Cause Mapping* method provides a simple way for people to analyze complex problems. Something as catastrophic as the Challenger disaster can begin with a simple 3- to 5-Why that expands into as much detail as needed. Each causal path on the Map provides opportunities to add layers of protection to reduce the risk of future incidents.



#### Solid Rocket Booster (SRB) Field Joint Design

## **Cause Mapping® Method**

